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Discrete Diffusion Monte Carlo (DDMC) is a hybrid transport-diffusion 
method for Monte Carlo simulations in diffusive media. In DDMC, 
particles take discrete steps between spatial cells according to a 
discretized diffusion equation. Thus, DDMC produces accurate solutions 
while increasing the efficiency of the Monte Carlo calculation. In this 
paper, we extend previously developed DDMC techniques in several ways 
that improve the accuracy and utility of DDMC for grey Implicit Monte 
Carlo calculations. First, we employ a diffusion equation that is 
discretized in space but is continuous time. Not only is this methodology 
theoretically more accurate than temporally discretized DDMC 
techniques, but it also has the benefit that a particle’s time is always 
known. Thus, there is no ambiguity regarding what time to assign a 
particle that leaves an optically thick region (where DDMC is used) and 
begins transporting by standard Monte Carlo in an optically thin region. 
In addition, we treat particles incident on an optically thick region using 
the asymptotic diffusion-limit boundary condition. This interface technique 
can produce accurate solutions even if the incident particles are 
distributed anisotropically in angle. Finally, we develop a method for 
estimating radiation momentum deposition during the DDMC simulation. 
With a set of numerical examples, we demonstrate the accuracy and 
efficiency of our improved DDMC method.  

Introduction 
The Implicit Monte Carlo (IMC) method (Fleck and Cummings, 1971) has been 

shown to be an effective technique for solving radiative transfer problems via Monte 
Carlo simulation. In IMC, the absorption and emission of radiation by the material within 
a time step is approximated semi-implicitly by an effective scatter process. This effective 
scattering helps stabilize the calculation and allows larger time steps to be used than in a 
purely explicit method (Larsen and Mercier, 1987; Martin and Brown, 2002) (where 
radiation absorbed in a given time step cannot be re-emitted until the following time 
step). However, in optically thick regions not only is the mean-free path of a particle 
small, but also the collisions are dominated by effective scatters. Thus, the transport 
process can be characterized as diffusive, the particle histories are extremely long, and the 
Monte Carlo simulation becomes computationally inefficient.  
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Due to the diffusive nature of such problems, one would like to employ a hybrid 
method that uses standard transport theory in optically thin regions and the diffusion 
approximation in optically thick regions. Ideally, this hybrid technique would produce 
accurate solutions while being more efficient than a pure Monte Carlo calculation. One 
such hybrid transport-diffusion method is the Random Walk (RW) technique (Fleck and 
Canfield, 1984; Giorla and Sentis, 1987). In RW, several Monte Carlo transport steps are 
replaced by a macrostep over a spherical subregion of the cell centered about the 
particle’s current position, thus increasing the overall efficiency of the simulation. Each 
RW step is governed by an analytic diffusion solution within the sphere, and the 
minimum allowable sphere radius is limited to ensure the accuracy of the diffusion 
solution. As a particle nears a cell boundary, the radius of the sphere is reduced, RW is 
disabled, and the particle is transported by standard Monte Carlo. Thus, the efficiency 
gain when employing RW decreases with increasing spatial resolution.  

A new hybrid transport-diffusion method that is currently under development is 
Discrete Diffusion Monte Carlo (DDMC) (Urbatsch et al., 1999; Evans et al., 2000; 
Gentile, 2001). In DDMC, particles take discrete steps between spatial cells according to 
a discretized diffusion equation, with each discrete step replacing many small transport 
steps. Since a particle can travel to a new cell each DDMC step, as opposed to across a 
spatial subdomain within a cell, DDMC should be able to provide a greater efficiency 
gain over standard Monte Carlo than RW.  

Urbatsch et al. (1999) have developed a DDMC method for steady-state neutron 
transport problems, while the DDMC technique of Evans et al. (2000) is designed to 
work with the equilibrium diffusion equation (Larsen et al., 1983). Gentile (2001) has 
successfully applied DDMC (which he refers to as Implicit Monte Carlo Diffusion) to 
IMC simulations. In this paper, we extend these previously developed DDMC methods in 
several ways that improve the accuracy and utility of DDMC for grey (i.e. frequency-
independent) IMC calculations.  

First, we employ a diffusion equation that is discretized in space, but is continuous 
in time. In addition to being theoretically more accurate than temporally discretized 
DDMC implementations (Evans et al., 2000; Gentile, 2001), our methodology always 
retains the time of a particle. Thus, there is no ambiguity regarding what time to assign 
a “DDMC particle” (i.e. a particle transporting in an optically thick region according to 
DDMC) that leaves an optically thick region and is converted into a “Monte Carlo 
particle” (i.e. a particle transporting in an optically thin region according to standard 
Monte Carlo).  

Second, we use an improved interface method for converting Monte Carlo particles 
incident on an optically thick region into DDMC particles (Densmore, 2004). This 
technique, which is based on the asymptotic diffusion-limit boundary condition (Habetler 
and Matkowsky, 1975), produces accurate solutions in the interior of optically thick 
regions regardless of the angular distribution of the incident Monte Carlo particles. 
Previous DDMC implementations that employ the Marshak boundary condition 
(Urbatsch et al., 1999; Evans et al., 2000; Bell and Glasstone, 1985) can behave poorly if 
the incident Monte Carlo particles are strongly anisotropic (Densmore, 2004).  

Finally, we develop a method for calculating radiation momentum deposition during 
the DDMC simulation. In coupled radiation-hydrodynamics problems, the calculation of 
fluid motion requires estimates of both the energy and momentum deposited in the 
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material by the radiation (Mihalas and Weibel-Mihalas, 1999; Castor, 2004). The 
estimation of energy deposition is straightforward in both Monte Carlo and DDMC 
simulations; when a particle is absorbed its energy is allocated to the material. However, 
the calculation of momentum deposition in DDMC is difficult since momentum is a 
direction-dependent quantity, and DDMC particles have no angular information. To 
avoid this difficulty, our momentum deposition estimator is based on the rate at which 
DDMC particles cross cell surfaces. Thus, angular information is extracted from the 
direction a particle travels to a new cell.  

In the remainder of this paper we briefly overview the analytic equations governing 
grey thermal radiative transfer, the corresponding IMC method, and difficulties with 
IMC when the opacity is large. We then develop our improved DDMC method, and 
show how it can be combined with standard Monte Carlo in an IMC simulation. Next, 
with a set of numerical examples, we demonstrate both the accuracy and improved 
efficiency over standard Monte Carlo of our new DDMC method. We conclude with a 
brief discussion

Background  
In the absence of internal sources and scattering, the planar-geometry, grey 

radiative transfer equations are (Mihalas and Weibel-Mihalas, 1999; Castor, 2004; 
Pomraning, 1973)  
 

 (1) 
and 

 

 (2) 

Here, 0 < x < X is the spatial variable, −1 < µ < 1 is the angular variable, t > 0 is the 
temporal variable, I(x, µ, t) is the radiation intensity, T (x, t) is the material temperature, 

),( Tx! is the opacity, ),( TxC
V

is the heat capacity, a is the radiation constant, and c is 
the speed of light. To complete the problem description, appropriate initial conditions 
apply to I and T at t = 0, and to I for incoming directions at the left (x = 0) and right (x = 
X) boundaries.  

In order to solve Eqs. 1 and 2 using IMC, we first prescribe a temporal grid 0 = t0 < t1 
< t2 < ···. Then, within each time step tn < t < tn+1, the emission source on the right side of 
Eq. 1 is semi-implicitly approximated using Eq. 2. The resulting equations governing the 
IMC method are (Fleck and Cummings, 1971)  

 
 (3) 
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and 

 (4) 

where the subscript n refers to a material property evaluated at the beginning of the 
time-step temperature. In addition, the Fleck factor fn is given by  
 

 (5) 
where 

 (6) 
and ∆tn = tn+1 - tn is the size of the time step. 

Within each time step, Eq. 3 can be solved for I using standard Monte Carlo 
simulation. The initial conditions are given by the prescribed initial radiation intensity 
and material temperature for the first time step, or by the results of the previous time step 
for subsequent time steps. Note that we have divided the physical opacity 

n
!  into an 

isotropic effective-scattering opacity nnf !)1( "  and a corresponding effective-absorption 
opacity nnf ! . Thus, the IMC method approximates the absorption and emission of 
radiation within a time step by isotropic scattering. Accordingly, the emission source has 
been reduced by a factor fn. After I has been determined, the material temperature is 
updated using the radiation absorbed and emitted over the time step to evaluate Eq. 4.  

In addition to the net radiation energy deposited in the material, coupled radiation-
hydrodynamics calculations also require an estimate of the radiation momentum 
deposited in the material. The specific momentum deposition (the momentum deposited 
per unit volume per unit time) corresponding to Eq. 1 is given by (Mihalas and Weibel-
Mihalas, 1999; Castor, 2004)  

 (7) 

Integrals of this form can be estimated by Monte Carlo simulation in a straightforward 
manner. In this paper, we employ a track-length estimator (Lewis and Miller, 1993), and 
approximate the opacity by its explicit value

n
! .  

Equations 3 and 4 provide a systematic method for solving Eqs. 1 and 2 via Monte 
Carlo. However, in materials where the opacity is large, the Monte Carlo simulation can 
become inefficient. Not only is the mean-free path between collisions small, but also, 
from Eq. 5, the Fleck factor is small and the collisions are primarily scattering events. 



Proceedings from the 5LC 2005 

Densmore, J. D. et al. 5 

Thus, the problem is highly diffusive and the Monte Carlo histories are extremely long. 
In the next section we develop a hybrid transport-diffusion technique for solving Eq. 3 
that is much more efficient than standard Monte Carlo when the opacity is large, and still 
yields accurate results.

Discrete Diffusion Monte Carlo  
We now develop the equations governing our improved DDMC method. This 

technique is based on a diffusion approximation to Eq. 3, so it should yield accurate 
solutions when used in appropriate regions (i.e. when 

n
! is large and fn is small). In 

addition, we will show later that the DDMC transport process consists of discrete steps 
between spatial cells. Thus, DDMC should be more computationally efficient than a 
standard Monte Carlo simulation of Eq. 3.  

We begin by considering a subregion XL < x < XR of the problem domain that has 
been designated for simulation by DDMC. In this region we develop a cell-centered 
discretization of the diffusion equation corresponding to Eq. 3. This derivation is 
similar to the work of Szilard and Pomraning (1992), except that we only discretize the 
spatial variable and treat time continuously. Integrating Eq. 3 over all directions, we 
have  

 (8) 
where the scalar intensity is 

 (9) 
and the radiative flux is given by 

 (10) 
 

Next, we divide the DDMC region into a spatial grid XL =x
1/2 

< x
3/2 

< ··· < x
J+1/2 

=XR consisting of J cells. Integrating Eq. 8 over spatial cell j yields  

 (11) 
In Eq. 11, the cell-averaged scalar intensity is given by  
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 (12) 
the cell-edge flux is  

 (13) 
∆xj = xj+1/2 – xj-1/2 is the cell width, and we have used appropriate cell-averaged quantities 
for the material properties.  

Interior Cells  
We continue our derivation of a cell-centered discretized diffusion equation for cells 

2 < j < J −1 in the interior of the DDMC region. We approximate the cell-edge flux using 
Fick’s law (Bell and Glasstone, 1985; Szilard and Pomraning, 1992),  

 (14) 

Employing a finite-difference approximation to Eq. 14, we can express F
j+1/2 

in cell j as  

 (15) 
or in cell j+1 as 

 (16) 

In Eqs. 15 and 16, 
2/1+j

!  is an appropriately defined cell-edge scalar intensity. In 
addition, we have used a face-averaged approximation for the opacity in each cell. We 
will discuss the evaluation of these opacities later in this paper.  

Next, equating Eqs. 15 and 16 and solving for the cell-edge scalar intensity, we have  

 
 (17) 
Then, using Eq. 17 to evaluate Eq. 15 or 16, an approximate expression for the cell-edge 
flux is  
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 (18) 

Substituting Eq. 18 and a similar expression for F
j−1/2 

into Eq. 11, the DDMC equation 
for cells 2 < j < j − 1 is  

 

 
 (19) 

In Eq. 19, we have defined the left-leakage opacity as 

 (20) 
and the right-leakage opacity as 

 (21) 

 
We now give Eq. 19 a Monte Carlo interpretation. This equation can be viewed as a 

time-dependent infinite medium transport problem for each cell. Thus, DDMC particles 
have no position or angular information, but their current cell and time are always known. 
DDMC particles stream in time (but not in space) at the speed of light until experiencing 
a collision. The time to collision !  can be sampled similarly to the usual method of 
sampling distance to collision (Lewis and Miller, 1993), 
 

 (22) 

where ξ is a random number uniformly distributed between 0 and 1. 
If the time to collision is less than the time remaining in the time step, the DDMC 

particle experiences an appropriately sampled collision type. From the second term on the 
left side of Eq. 19, a collision can be an absorption reaction, a left-leakage reaction, or a 
right-leakage reaction. If the collision is an absorption reaction, the particle history is 
terminated, as in standard Monte Carlo. If the DDMC particle undergoes a leakage 
reaction, it is transfered to the appropriate neighboring cell and the simulation continues.  
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If the time to collision is greater than the time remaining in the time step, the DDMC 
particle reaches the end of the time step and is stored for simulation in the next time step. 
Since in the next time step DDMC may not be used in the current cell, the DDMC 
particle is placed uniformly and isotropically within the cell.  

The right side of Eq. 19 contains not only the usual emission source term, but also 
source terms corresponding to DDMC particles undergoing leakage reactions in 
neighboring cells and being transferred to the current cell. These leakage source terms 
can be interpreted as the total rate at which particles experience appropriate leakage 
reactions in adjacent cells (i.e. the rate per volume times the volume of the cell) 
divided by the volume of the current cell, such that these leaked particles are 
distributed evenly over the cell.  

It is interesting to note that as the opacity increases, not only do the leakage 
opacities decrease (from Eqs. 20 and 21), but also the absorption opacity nnf !  is O(1) 
(from Eq. 5). Thus, from Eq. 22, the time between collisions is not excessively small, 
the collisions are primarily absorptions, and DDMC particle histories are relatively 
short. This is exactly the opposite effect that a large opacity has on a standard Monte 
Carlo simulation of Eq. 3.  

We now discuss the evaluation of the opacities in Eqs. 20 and 21. According to 
Szilard and Pomraning (1992) if one of the opacities is very large, then the entire 
expression can be small and radiation will not propagate. This lack of propagation is 
commonly seen when the opacity is strongly temperature dependent and the material is 
cold. To prevent this unphysical behavior, Szilard and Pomraning suggest evaluating the 
opacities at a common cell-edge temperature. For example, in Eq. 21 we calculate 

2/1, +

+

jn!  using the material properties in cell j+1, and 2/1, +

!
jn" using the material 

properties in cell j. However, both opacities are evaluated at the following cell-edge 
temperature (Szilard and Pomraning, 1992): 

 

 (23) 
A similar technique can be used to calculate Eq. 20. 

Interface Cells  
Next, we develop a technique for interfacing DDMC with standard Monte Carlo by 

deriving a cell-centered equation for cell 1 on the left boundary of the DDMC region. A 
similar analysis can be performed for cell J. Writing Eq. 11 for j = 1, and using Eq. 18 for 
F

3/2
, we have  

 
 (24) 
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where we have made use of Eqs. 20 and 21. To complete this derivation, we 
must find an approximate expression for the flux at the boundary of the DDMC 
region.  

Instead of using the usual Marshak boundary condition (Bell and Glasstone, 1985; 
Szilard and Pomraning, 1992), we consider the asymptotic diffusion-limit boundary 
condition (Habetler and Matkowsky, 1975),  

 (25) 
In Eq. 25, Ib is the radiation intensity incident on the boundary of the DDMC region 
due to Monte Carlo particles, while 7104.0!"  is the extrapolation distance. In 
addition, W (µ) is a transcendental function well approximated by  

 (26) 

 

Eq. 25 can be derived in an asymptotic analysis of Eq. 3 as 
n

!  becomes large and fn 

becomes small. This is exactly the situation in which DDMC is employed. In addition, 
the incident intensity is weighted by W (µ), which takes into account the angular 
distribution of the Monte Carlo particles. An interface method based on Eq. 25 will be 
able to produce accurate results in the interior of the DDMC region even if the incident 
intensity is anisotropic (Densmore, 2004). In contrast, the Marshak boundary condition 
treats all angular distributions identically, and can produce inaccurate solutions for 
strongly anisotropic incident particles (Densmore, 2004).  

To express F1/2 using Eq. 25, we approximate the derivative on the right side with a 
finite difference.  We then have 

 (27) 

where σn,1 is the cell-averaged opacity in cell 1, and φ1/2 is an appropriately defined cell-
edge scalar intensity.  Solving Eq. 27 for φ1/2 yields 

 (28) 
Next, we use Eq. 16 to represent F1/2, 

 (29) 
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where we have evaluated the face-averaged opacity with the cell-averaged value, i.e.,  

 (30) 

Substituting Eq. 28 into Eq. 29, an expression for the flux at the boundary of the DDMC 
region is 

(31) 
Using Eq. 31 in Eq. 24, the cell-centered equation for cell 1 is 

 
In Eq. 32, the left-leakage opacity for cell 1 is given by 
 

Instead of Eq. 20, and P(µ) is defined as 
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Eq. 32 has a Monte Carlo interpretation similar to that of Eq. 19. The only 

difference on the left side is the expression for the left-leakage opacity. On the right 
side there is now a source due to Monte Carlo particles incident on the boundary of the 
DDMC region. We note that the rate at which radiation energy is incident on the 
DDMC region boundary for a given direction µ is µIb. Then, P(µ) has the interpretation 
of being the probability that an incident Monte Carlo particle will be converted into a 
DDMC particle. This interface methodology is somewhat similar to the treatment 
developed by Brockway (Pomraning and Foglesong, 1979), except our technique is 
based on the asymptotic diffusion-limit boundary condition, whereas Brockway’s is 
developed from the Marshak boundary condition.  

We implement the conversion of Monte Carlo particles into DDMC particles in 
two separate ways. First, if the DDMC region is away from the problem boundary 
(e.g. 0!

L
X ) we sample based on Eq. 34 to determine if the incident Monte Carlo 

particle is converted. If the particle is converted, it begins transporting via DDMC in 
cell 1. Otherwise, the particle is returned isotropically to the optically thin region. 
DDMC particles that undergo left-leakage reactions in cell 1 are also placed 
isotropically on the boundary of the DDMC region. Although this is not the correct 
asymptotic albedo condition, it can be shown to be a good approximation (Gesh and 
Adams, 2001).  

If the DDMC region is on the boundary of the system (e.g. XL = 0), then the incident 
Monte Carlo particles are actually source particles due to a prescribed surface source. In 
this case, we split the particles according to Eq. 34. The converted portion of the particle 
begins transporting via DDMC in cell 1, while the unconverted portion is tallied as 
escaping energy. DDMC particles that experience left-leakage reactions in cell 1 are also 
treated as escaping energy.  
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There are two difficulties when evaluating the conversion probability, Eq. 34. First, 
the conversion probability, along with the left-leakage opacity given by Eq. 33, vanishes 
as the opacity becomes large. Thus, no radiation can pass through the DDMC region 
boundary if the first cell is too optically thick. We correct this by adjusting the conversion 
probability and leakage opacity to ensure the correct flux is maintained at the boundary. 
For brevity we do not repeat this analysis here, although documentation is available 
(Densmore and Carrington, 2005). In addition, Eq. 34 must have a valid probabilistic 
interpretation, i.e.  

 

 
 (3) 
In our DDMC method, we require that spatial cells are large enough such that Eq. 35 
is always satisfied. 

Estimation of Momentum Deposition  
As was discussed earlier, coupled radiation-hydrodynamics calculations require an 

estimate of not only the radiation energy deposition in the material, but also the radiation 
momentum deposition. The estimation of energy deposition in DDMC is the same as in 
standard Monte Carlo; when a particle is absorbed its energy is allocated to the material. 
The specific momentum deposition is given by Eq. 7,  

 

 (3) 

and is straightforward to estimate in a standard Monte Carlo simulation. However, the 
estimation of momentum deposition in DDMC is difficult, since there is no angular 
information available to evaluate Eq. 36.  

Instead, we use Eq. 10 to write Eq. 36 as a function of the radiative flux at a 
surface. For example, at x = x 

j+1/2
, we have  

 

 (3) 
where we have employed an appropriate face-averaged value of the opacity. Then, for 
each cell we average the two cell-edge values of the momentum deposition in order to 
estimate the cell-averaged value: 

 
 (3) 
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Note that we have evaluated Eq. 37 using the same face-averaged opacities used to 
calculate the leakage opacities (Eqs. 20, 21, and 33).  

The flux in Eq. 38 can be calculated easily during a DDMC simulation. For 
instance, Eq. 18 can be expressed using Eqs. 20 and 21 as  

 
 (3) 
Eq. 39 has interpretation of the rate at which particles undergo right-leakage reactions 
in cell j, minus the rate at which particles undergo left-leakage reactions in cell j + 1. 
Similarly, Eq. 31 can be written using Eqs. 33 and 34 as  

 

 (3) 
which can be interpreted as the rate at which Monte Carlo particles incident on the 
DDMC region boundary are converted into DDMC particles, minus the rate at which 
DDMC particles undergo left-leakage reactions in cell 1. Eqs. 39 and 40 can be used to 
evaluated Eq. 38 for each spatial cell in the problem.

Numerical Results  
To demonstrate the accuracy and improved efficiency of our new DDMC method, 

we consider a series of radiative transfer problems simulated with IMC using both 
DDMC and standard Monte Carlo. In these problems we measure energy in gigajoules 
(gJ), time in nanoseconds (ns), and temperature in kiloelectron-volts (keV). In addition, 
unless otherwise stated, the material has a temperature-independent heat capacity of Cv 

= 0.1 gJ/cm
3
/keV, and an opacity inversely proportional to the cube of the material 

temperature,  

 
 (3) 

In the following simulations we use several values of 
0

!  to test our improved 
DDMC method under various conditions.  

Infinite Medium Problems  
In the first set of problems, we examine a 1.0 cm thick slab with reflective boundary 

conditions. The matter and radiation are initially in equilibrium at 1 keV, and should 
remain in equilibrium indefinitely. We use a cell size of 0.1 cm, a time-step size of 0.1 
ns, and 10,000 particles per time step. For each value of  

0
!  we ran the simulation for 

an elapsed time of 10 ns using each of DDMC and standard Monte Carlo over the entire 
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problem domain.  
Every simulation, both standard Monte Carlo and DDMC, retained the correct 

equilibrium solution. The timing results of these simulations are give in Table 1. Here, 
we have defined speedup as the computer time required by standard Monte Carlo 
divided by that required by DDMC. From these results we see that DDMC always 
increases the efficiency of the IMC calculation, from a factor of about 3 to over 5000. 
As expected, DDMC becomes more efficient, relative to standard Monte Carlo, as the 
opacity becomes larger.  

Table 1. Infinite medium timing results. 

0
!  (keV3/cm) Monte Carlo Time (s) DDMC Time (s) Speedup 

100 670 197 3.4 

500 2.70E3 47 57 

1000 5.25E3 27 190 

5000 2.56E4 12 2100 

10000 5.11E4 10 5100 

 

Thermal Waves  
The next set of problems consists of thermal waves driven by a surface source at 1 

keV incident on the left boundary of the system. The material and radiation are initially in 
equilibrium at 0.001 eV. In these simulations the cell size is 0.005 cm, the time-step size 
is 0.01 ns, and we use 100,000 particles per time step. Again, for each value of 

0
! , the 

IMC calculation was performed using standard Monte Carlo or DDMC throughout the 
entire problem. Each simulation was run out to an elapsed time of 10 ns.  

We first consider a thermal wave where the surface source is isotropic. The timing 
results from these simulations are presented in Table 2. From this table, we see that 
DDMC improves the efficiency of the IMC calculation, with an increasing 
improvement as the opacity increases. For these problems the speedup ranged from 
about 40 to over 400. 
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Table 2. Isotropic surface source timing results. 

0
!  (keV3/cm) Monte Carlo Time (s) DDMC Time (s) Speedup 

1000 5.40E4 1.09E3 49.5 

5000 2.05E5 8.06E2 254 

10000 3.59E5 7.82E2 459 

 
 

We also plot the material temperature and momentum deposition at 10 ns for  
0

! = 
1000 keV

3
/cm in Figures 1 and 2, respectively. These plots are characteristic of the 

results for other values of 
0

! . From Figure 1, the DDMC temperature agrees well with 
the standard Monte Carlo solution. Also, as seen in Figure 2, the momentum deposition 
results tend to match, especially near the wave front. However, both the DDMC and 
standard Monte Carlo momentum deposition estimates suffer severe statistical noise. This 
large amount of statistical error is characteristic of momentum deposition calculations. 

 
Figure 1. Isotropic surface source material temperature, 

0
! = 1000 keV

3
/cm. 
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Figure 2. Isotropic surface source momentum deposition, 
0

!  = 1000 keV
3
/cm . 

 
In addition to an isotropic surface source, we also examine thermal waves driven by 

a normally incident surface source. This anisotropic incident intensity will induce a 
boundary layer and test the effectiveness of our improved interface method. The timing 
results for these simulations are given in Table III. Again, DDMC is more efficient than 
standard Monte Carlo, with a greater efficiency gain as the opacity increases.  

Table 3. Normal surface source timing results. 

0
!  (keV3/cm) Monte Carlo Time (s)  DDMC Time (s)  Speedup  

1000 5.12E4 1.15E3 44.5 

5000 1.99E5 7.89E2 252 

10000 3.56E5 7.46E2 477 

 
The material temperature and momentum deposition at 10 ns for 

0
!  = 1000 keV3/cm 

are plotted in Figures 3 and 4, respectively. As with the isotropic surface source 
problems, these plots are characteristic of the results for other values of 

0
! . From these 

figures we see that the DDMC solution matches the Monte Carlo results quite well. 
Again, both estimates of momentum deposition suffer from high statistical error. We also 
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note that the temperature is slightly higher and the wave has progressed slightly farther in 
Figure 3 than in Figure 1. If we had employed a Marshak boundary condition as opposed 
to the asymptotic diffusion-limit boundary condition to develop our interface method, the 
material temperature calculated by DDMC would be identical in Figures 3 and 1, which 
is incorrect for a normally incident intensity. 

 

 

Figure 3. Normal surface source material temperature, 
0

! = 1000 keV3/cm. 
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Figure 4. Normal surface source momentum deposition, 

0
! = 1000 keV

3
/cm. 

 

Hybrid Problems  
We now consider two problems with both optically thick and optically thin regions. 

We model the optically thick region with an opacity given by Eq. 41 with 
0

!  = 1000 
keV

3
/cm. The optically thin region has a temperature-independent opacity of 1 cm

−1
. The 

material and radiation are initially in equilibrium at 0.001 eV, and the left boundary has 
a surface source at 1 keV. In these simulations, the cell thickness is 0.005 cm in the 
optically thick region, 0.02 cm in the optically thin region, the time-step size is 0.01 ns, 
and we use 100,000 particles per time step.  

To solve these problems we employ standard Monte Carlo in the optically thin 
region, and either standard Monte Carlo or DDMC in the optically thick region. The 
pure Monte Carlo calculation serves as our benchmark solution, while the hybrid Monte 
Carlo-DDMC simulation will test the accuracy and efficiency of DDMC.  

In the first problem the surface source is isotropic, and the left-most region consists 
of 0.1 cm of optically thick material followed by a 0.4 cm optically thin region. The 
right boundary is reflective such that the problem will eventually reach equilibrium at 1 
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keV. Each simulation was run to 150 ns.  
The material temperature at 10, 20, and 150 ns is plotted in Figure 5. From this figure 

we see that the DDMC results agree fairly well with the standard Monte Carlo solution, 
and both methods produced the correct equilibrium solution. In Figure 6 we plot the 
specific momentum deposition at 10 ns. From this plot it appears that the DDMC 
simulation overestimates the peak momentum deposition with respect to standard Monte 
Carlo. This error is most likely caused by DDMC momentum deposition being estimated 
at cell edges, while standard Monte Carlo momentum deposition is estimated as a cell 
average. The standard Monte Carlo simulation required 120 hours of computer time, 
while DDMC used 5.6 hours, for a speedup of over 20.  

 
Figure 5. First hybrid problem material temperature. 
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Figure 6. First hybrid problem momentum deposition. 

 
In the second problem the surface source is normally incident, and the left-most 

region is 1 cm of optically thin material followed by 0.5 cm of optically thick material. 
Each simulation was run for an elapsed time of 50 ns. Since the optically thin region is a 
mean-free path thick, the intensity reaching the optically thick region is fairly anisotropic. 
Thus, using our improved interface method is important.  

The resulting material temperature at 0.5, 1.5, and 50 ns is plotted in Figure 7. Again, 
the DDMC results agree well with the standard Monte Carlo solution. In addition, we plot 
the specific momentum deposition at 0.5 ns in Figure 8. Most momentum deposition 
occurred only in a few cells. However, the DDMC estimate was within 1.6% of the 
standard Monte Carlo solution at the peak value. For this problem standard Monte Carlo 
took 28.6 hours, while DDMC required 2.2 hours, for a speedup of about 13.  
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Figure 7. Second hybrid problem material temperature. 

 



Proceedings from the 5LC 2005 

Densmore, J. D. et al. 22 

 

Figure 8. Second hybrid problem momentum deposition.

 

Conclusions 
We have extended previously developed DDMC methods in several ways that 

improve the accuracy and utility of DDMC for grey IMC simulations. First, we base our 
DDMC method on a temporally continuous diffusion equation. This lack of temporal 
discretization results in a theoretically more accurate DDMC calculation, and no 
ambiguity regarding what time to assign to DDMC particles that are converted to Monte 
Carlo particles. Also, we employ a technique for interfacing standard Monte Carlo and 
DDMC based on the asymptotic diffusion-limit boundary condition. This technique can 
produce accurate results regardless of the angular distribution of incident Monte Carlo 
particles. Finally, we develop a method for estimating momentum deposition in DDMC 
simulations. This momentum deposition estimate is required to correctly calculate fluid 
motion in coupled radiation-hydrodynamics problems.  

With a set of numerical calculations, we have demonstrated the accuracy and 
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improved efficiency of our new DDMC method as compared to standard Monte Carlo. 
However, our estimates of momentum deposition, both using DDMC and standard Monte 
Carlo, exhibited a large amount of statistical error. The reduction of this statistical noise 
is the subject of current research.  

We also note that, in our numerical simulations, the region in which DDMC was 
employed was always determined a priori. In order for DDMC to be used in practical 
calculations, a technique for automatically determining when and where to employ 
DDMC must be developed. In addition, the one-dimensional, grey DDMC method 
presented here must be extended to multi-dimensional, frequency-dependent problems. 
These issues remain for future work.  
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